II. những bài tập ví dụ về bài bác toán thù tìm m để hai tuyến phố thẳng tuy vậy tuy nhiên, giảm nhau, trùng nhau cùng vuông góc. Bài 1: Cho nhị hàm số y = kx + m -2 với y = (5 - k).x + (4 - m). Tìm m, k chứa đồ thị của nhì hàm số:a, Trùng nhaub, Song song cùng với nhauc, Cắt nhau
2.2. Điều kiện để đường thẳng vng góc với mặt phẳng Hoạt động 1: Tiếp cận định lý Gợi ý + Cho hai đường thẳng a và b cắt nhau và cùng nằm trong mặt phẳng (α), đường thẳng d cùng vuông góc với 2 đường thẳng a và b. +Yêu cầu các nhóm trình bày kết quả thảo
Bạn đang xem: 2 đường thẳng vuông góc lớp 10 Tìm m để hai tuyến đường trực tiếp tuy nhiên tuy vậy, cắt nhau, vuông góc hoặc trùng nhau là 1 trong dạng toán thường gặp mặt vào đề thi tuyển chọn sinch vào lớp 10 môn Tân oán được hanvietfoundation.org soạn với reviews cho tới
Chương 1: ĐƯỜNG THẲNG VUÔNG GÓC ĐƯỜNG THẲNG SONG SONGBài 1: HAI GÓC ĐỐI ĐỈNHI. MỤC TIÊU: Học sinh hiểu biết thế nào là hai góc đối đỉnh và nắm được tính chất của hai góc đối đỉnh thì bằng nhau.
Bài 2. Hai đường thẳng vuông góc – hình học 7. Thuộc chủ đề:Giải bài tập Toán 7 Tag với:Bai 2 chuong 1 hinh hoc 7, Chuong 1 hinh hoc 7.
Vay Tiền Trả Góp 24 Tháng. Hai đường thẳng vuông góc Hai đường thẳng cắt nhau tạo thành những góc vuông là hai đường thẳng thẳng vuông góc. Kí hiệu \xx' \bot yy'\. Tính chất Có một và chỉ một đường thẳng a’ đi qua điểm O cho trước và vuông góc với đường thẳng a cho trước. Đường trung trực của đoạn thẳng Đường thẳng đi qua trung điểm của đoạn thẳng và vuông góc với đoạn thẳng được gọi là đường trung trực của đoạn thẳng ấy. xy là đường trung trực của đoạn thẳng AB. Ví dụ 1 Cho AOM có số đo bằng \{120^0}\. Vẽ các tia OB, OC nằm trong góc AOM sao cho \OB \bot OA,OC \bot OM.\ Tính số đo góc BOC. Hướng dẫn giải OB nằm giữa OA, OM mà \\begin{array}{l}\widehat {AOB} = {90^0}\\\widehat {AOM} = {120^0}\end{array}\. Vậy \\widehat {BOM} = {120^0} - {90^0} = {30^0}\. \\begin{array}{l}\widehat {MOB} = {30^0}\\\widehat {MOC} = {90^0}\end{array}\. Vậy OB nằm giữa OM, OC \\widehat {BOC} = {90^0} - {30^0} = {60^0}\. Ví dụ 2 Cho góc xOy tù, ở miền trong góc ấy dựng các tia Oz và Ot sao cho Oz vuông góc với Ox, Ot vuông góc Oy. Tính tổng số đo của hai góc xOy và zOt. Hướng dẫn giải Ta có Ox vuông góc với Oz nên \\widehat {xOz} = {90^0}\ Ot vuông góc với Oy nên \\widehat {tOy} = {90^0}\ Nên \\widehat {xOy} + \widehat {zOt} = \widehat {tOy} + \widehat {xOt} + \widehat {zOt}\ \ = \widehat {tOy} + \widehat {xOz} = {180^0}\. Ví dụ 3 Cho góc aOb có số đo bằng \{100^0}\. Dựng ở ngoài góc ấy hai tia Oc và Od theo thứ tự vuông góc với Oa và Ob. Gọi Ox là tia phân giác của góc aOb và Oy là tia phân giác của góc cOd. a. Chứng minh rằng hai tia Ox và Oy đối nhau. b. Tìm số đo các góc xOc và bOy. Hướng dẫn giải Ta có \\widehat {aOb} = {100^0},\,\,\widehat {aOc} = {90^0},\widehat {bOd} = {90^0}\ \\begin{array}{l} \Rightarrow \widehat {cOd} = {360^0} - \widehat {aOb} + \widehat {aOc} + \widehat {bOd}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \,{360^0}\, - {100^0} + {90^0} + {90^0} = {360^0} - {280^0} = {80^0}.\end{array}\ Ox là tia phân giác của \\widehat {aOb}\ nên \\widehat {xOa} = \frac{1}{2}\widehat {aOb} = \frac{1}{2}{.100^0} = {50^0}\ Oy là tia phân giác của \\widehat {cOy}\ nên \\widehat {cOy} = \frac{1}{2}\widehat {cOd} = \frac{1}{2}{.80^0} = {40^0}\ Do đó \\widehat {xOy} = \widehat {xOa} + \widehat {aOc} + \widehat {cOy}\ \ = {50^0} + {90^0} + {40^0}\ Hay \\widehat {xOy} = {180^0}\ Suy ra Ox và Oy là hai tia đối nhau. b. Ta có \\widehat {xOc} = \widehat {xOa} + \widehat {aOc} = {50^0} + {90^0} = {140^0}\. \\widehat {bOy} = \widehat {bOd} + \widehat {dOy} = {90^0} + {40^0} = {130^0}\.
Chuyên đề luyện thi vào 10 Tìm điều kiện của m để hai đường thẳng cắt nhau, song song, vuông góc hoặc trùng nhauI. Bài toán tìm m để hai đường thẳng cắt nhau, song song, trùng nhau và vuông gócII. Bài tập ví dụ về bài toán tìm m để hai đường thẳng song song, cắt nhau, trùng nhau và vuông gócIII. Bài tập tự luyện về bài toán chứng minh đồ thị hàm số luôn đi qua một điểm cố địnhBạn đang xem 2 Đường thẳng vuông góc lớp 10 chuẩn nhất, lý thuyết phương trình Đường thẳngTìm m để hai đường thẳng song song, cắt nhau, vuông góc hoặc trùng nhau là một dạng toán thường gặp trong đề thi tuyển sinh vào lớp 10 môn Toán được biên soạn và giới thiệu tới các bạn học sinh cùng quý thầy cô tham khảo. Nội dung tài liệu sẽ giúp các bạn học sinh học tốt môn Toán lớp 9 hiệu quả hơn. Mời các bạn tham Câu hỏi trắc nghiệm Hàm số bậc nhấtToán nâng cao lớp 9 Chủ đề 4 Hàm số bậc nhất - hàm số bậc haiHàm số bậc nhấtĐể tiện trao đổi, chia sẻ kinh nghiệm về giảng dạy và học tập các môn học lớp 9, mời các thầy cô giáo, các bậc phụ huynh và các bạn học sinh truy cập nhóm riêng dành cho lớp 9 sau Nhóm Luyện thi lớp 9 lên 10. Rất mong nhận được sự ủng hộ của các thầy cô và các đề này được biên soạn gồm hướng dẫn giải chi tiết cho dạng bài tập "Tìm m thỏa mãn điều kiện vị trí tương đối của hai đường thẳng", vốn là một câu hỏi điển hình trong đề thi tuyển sinh vào lớp 10. Đồng thời tài liệu cũng tổng hợp thêm các bài toán để các bạn học sinh có thể luyện tập, củng cố kiến thức. Qua đó sẽ giúp các bạn học sinh ôn tập các kiến thức, chuẩn bị cho các bài thi học kì và ôn thi vào lớp 10 hiệu quả nhất. Sau đây mời các bạn học sinh cùng tham khảo tải về bản đầy đủ chi thêm Hướng Dẫn Cách Chơi 2 Acc Vltk Mobile Trên Bluestacks, Cách Mở Nhiều Cửa Sổ Bluestacks Cùng LúcI. Bài toán tìm m để hai đường thẳng cắt nhau, song song, trùng nhau và vuông góc+ Cho hai đường thẳng d y = ax + b và d’ y = a’x + b- Hai đường thẳng cắt nhau d cắt d’ khi a ≠ a"- Hai đường thẳng song song với nhau d // d’ khi a = a" và b ≠ b"- Hai đường thẳng vuông góc d ⊥ d" khi = -1- Hai đường thẳng trùng nhau khi a = a" và b = b"+ Nếu bài toán cho 2 hàm số bậc nhất y = ax + b và y = a’x + b’ thì phải thêm điều kiện a ≠ 0 và a" ≠ 0II. Bài tập ví dụ về bài toán tìm m để hai đường thẳng song song, cắt nhau, trùng nhau và vuông gócBài 1 Cho hai hàm số y = kx + m -2 và y = 5 - k.x + 4 - m. Tìm m, k để đồ thị của hai hàm sốa, Trùng nhaub, Song song với nhauc, Cắt nhauLời giảiĐể hàm số y = kx + m - 2 là hàm số bậc nhất khi k ≠ 0Để hàm số y = 5 - kx + 4 - m là hàm số bậc nhất khi 5 - k ≠ 0 ⇔ k ≠ 5a, Để đồ thị của hai hàm số trùng nhauVậy với ; m = 3 thì đồ thị của hai hàm số trùng nhaub, Để đồ thị của hai hàm số song song với nhau Vậy với ; m ≠ 3 thì đồ thị của hai hàm số song song với nhauc, Để đồ thị của hai hàm số cắt nhau ⇔ k ≠ 5 - k ⇔ 2k ≠ 5 ⇔Vậy với thì hai đồ thị hàm số cắt nhauBài 2 Cho hàm số y = 2m - 3x + m - 5. Tìm m để đồ thị hàm sốa, Tạo với 2 trục tọa độ một tam giác vuông cânb, Cắt đường thẳng y = 3x - 4 tại một điểm trên Oyc, Cắt đường thẳng y = -x - 3 tại một điểm trên OxLời giảiĐể hàm số là hàm số bậc nhất ⇔ 2m - 3 ≠ 0 ⇔ a, Gọi giao điểm của hàm số với trục Ox là A. Tọa độ của điểm A là Độ dài của đoạn Gọi giao điểm của hàm số với trục Oy là B. Tọa độ của điểm B là B 0; m - 5Độ dài của đoạn OB = m - 5 Ta có tam giác OAB là tam giác vuông tại AĐể tam giác OAB là tam giác vuông cân Vậy với m = 1 hoặc m = 2 thì đồ thị hàm số tạo với hai trục tọa độ tam giác vuông cânb, Gọi A là điểm đồ thị hàm số cắt đường thẳng y = 3x - 4 tại một điểm trên trục Oy trục tung⇒ A 0; bThay tọa độ điểm A vào đồ thị hàm số y = 3x - 4 ta có b = 4Điểm A0; 4 thuộc đồ thị hàm số y = 2m - 3x + m - 5 nên ta có4 = 2m - 3. 0 + m - 5 ⇔ m - 5 = 4 ⇔ m = 9 thỏa mãnVậy với m = 9 thì đồ thị hàm số cắt đường thẳng y = 3x - 4 tại một điểm trên trục tungc, Gọi B là điểm đồ thị hàm số cắt đường thẳng y = - x - 3 tại một điểm trên trục Ox trục hoành⇒ B a; 0Thay tọa độ điểm B vào đồ thị hàm số y = - x - 3 ta có a = - 3Điểm B -3; 0 thuộc đồ thị hàm số y = -x - 3 nên ta có0 = -3. 2m - 3 + m - 5 ⇔ -5m + 4 = 0 ⇔ m = thỏa mãnVậy với thì đồ thị hàm số cắt đường thẳng y = -x - 3 tại một điểm trên trục hoànhBài 3 Cho hai đường thẳng d1 y = m + 1x + 2 và d2 y = 2x + 1. Tìm m để hai đường thẳng cắt nhau tại một điểm có hoành độ và tung độ trái dấuLời giảiĐể hai đường thẳng cắt nhau thì m + 1 ≠ 2 ⇔ m ≠ 1Phương trình hoành độ giao điểmm + 1 x + 2 = 2x + 1⇔ mx + x + 2 = 2x + 1⇔ x m + 1 - 2 = -1⇔ x m - 1 = -1Với Để hoành độ và tung độ trái dấu thì Vậy A1; 1Ba đường thẳng đồng quy nên đồ thị hàm số y = m - 2x + m + 3 đi qua điểm A1; 1Thay tọa độ điểm A vào phương trình ta có 1 = 1.m - 2 + m + 3 hay m = 0Vậy với m = 0 thì ba đường thẳng đồng quyIII. Bài tập tự luyện về bài toán chứng minh đồ thị hàm số luôn đi qua một điểm cố địnhBài 1 Cho hàm số y = 2x + 3k và y = 2m + 1x + 2k - 3. Tìm điều kiện của m và k để đồ thị của hai hàm số là Cách tính delta và delta phẩy phương trình bậc 2 Suy nghĩ về câu tục ngữ Một cây làm chẳng nên non, ba cây chụm lại nên hòn núi cao Viết đoạn văn nghị luận về hiện tượng học tủ, học vẹt 19 Đoạn văn viết về Sở thích bằng tiếng Anh Trình bày suy nghĩ của em về trách nhiệm của thế hệ trẻ hôm nay đối với đất nước trong hoàn cảnh mới Tính m để phương trình bậc hai có hai nghiệm trái dấu Tìm m để phương trình có 2 nghiệm x1 x2 thỏa mãn điều kiện cho trước
2 đường thẳng vuông góc